Design and implementation of a low cost thermal soaring system for uninhabited aircraft
Authors
Advisors
Issue Date
Type
Keywords
Citation
Abstract
The use of atmospheric updrafts as an energy source for long endurance flight has proven to be extremely advantageous for birds, remote control sailplanes, and manned soaring vehicles. Recent research conducted by Michael Allen at NASA and Dr. Dan Edwards at North Carolina State University has demonstrated the viability of using a UAV to search for, detect, and gain altitude using thermal updrafts. This approach can be taken a step further by introducing multiple cooperating vehicles to reduce the time spent searching for thermal lift while simultaneously increasing the time spent in thermal lift gaining altitude and/or saving fuel. UAV missions calling for multiple vehicles can use this approach to reduce the demand for on board energy storage by using environmental energy more effectively than a vehicle flying alone. This research aims to complement existing autonomous soaring efforts by developing a low cost thermal soaring system that is capable of working with single or multiple cooperating vehicles to find and utilize thermal updrafts. Early simulations developed to validate this idea have given rise to further analysis and experimentation with two custom airframes, each equipped with instruments to detect updrafts and autonomous capabilities to test cooperative soaring algorithms in the real world. The system developed used a sub $1000 commercial off-the-shelf autopilot and custom ground control software to achieve many autonomous soaring flights with a single vehicle. Several flights with two autonomous vehicles were also performed and cooperative behavior was demonstrated.