• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uncertainty of temperature measurements by infrared thermography for metal cutting applications

    Date
    2013-12
    Author
    Whitenton, Eric
    Madhavan, Viswanathan
    Donmez, Mehmet A.
    Lane, Brandon
    Metadata
    Show full item record
    Citation
    Lane, Brandon; Whitenton, E.; Madhavan, Viswanathan; Donmez, A. 2013. Uncertainty of temperature measurements by infrared thermography for metal cutting applications. Metrologia, vol. 50:no. 6:ppg. 637-653
    Abstract
    This paper presents a comprehensive analysis of the uncertainty in the measurement of the peak temperature on the side face of a cutting tool, during the metal cutting process, by infrared thermography. The analysis considers the use of a commercial off-the-shelf camera and optics, typical of what is used in metal cutting research. A physics-based temperature measurement equation is considered and an analytical method is used to propagate the uncertainties associated with measurement variables to determine the overall temperature measurement uncertainty. A Monte Carlo simulation is used to expand on the analytical method by incorporating additional sources of uncertainty such as a point spread function (PSF) of the optics, difference in emissivity of the chip and tool, and motion blur. Further discussion is provided regarding the effect of sub-scenel averaging and magnification on the measured temperature values. It is shown that a typical maximum cutting tool temperature measurement results in an expanded uncertainty of U = 50.1 degrees C (k = 2). The most significant contributors to this uncertainty are found to be uncertainties in cutting tool emissivity and PSF of the imaging system.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1088/0026-1394/50/6/637
    http://hdl.handle.net/10057/7117
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV