• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis, characterization, and application of antibody functionalized fluorescent silica nanoparticles

    Date
    2013-07-12
    Author
    Hurley, Matthew T.
    Wang, Zifan
    Mahle, Amanda
    Rabin, Daniel
    Liu, Qing
    English, Douglas S.
    Zachariah, Michael R.
    Stein, Daniel
    DeShong, Philip
    Metadata
    Show full item record
    Citation
    Hurley, Matthew T.; Wang, Zifan; Mahle, Amanda; Rabin, Daniel; Liu, Qing; English, Douglas S.; Zachariah, Michael R.; Stein, Daniel; DeShong, Philip. 2013. Synthesis, characterization, and application of antibody functionalized fluorescent silica nanoparticles. Advanced Functional Materials, vol. 23:no. 26:ppg. 3335-3343
    Abstract
    Fluorescent silica nanoparticles (FSNs) are prepared by incorporating dye into a mesoporous silica nanoparticle (MSN) synthesis procedure. FSNs containing sulforhodamine B, hydrophobically modified sulforhodamine B, and Cascade Blue hydrazide are made. The MSN-based FSNs do not leach dye under simulated physiological conditions and have strong, stable fluorescence. FSNs prepared with sulforhodamine B are compared to FSNs prepared with hydrophobically modified sulforhodamine B. The data indicate that FSNs prepared with sulforhodamine B are equally as stable but twice as fluorescent as particles made with hydrophobically modified sulforhodamine B. The fluorescence of a FSN prepared with sulforhodamine B is 10 times more intense than the fluorescence of a 4.5 nm core-shell CdSe/ZnS quantum dot. For diagnostic applications, a method to selectively and covalently bind antibodies to the surface of the FSNs is devised. FSNs that are functionalized with antibodies specific for Neisseria gonorrhoeae specifically bind to Neisseria gonorrhoeae in flow cytometry experiments, thus demonstrating the functionality of the attached antibodies and the potential of MSN-based FSNs to be used in diagnostic applications.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1002/adfm.201202699
    http://hdl.handle.net/10057/7075
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV