• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-planar lifting-line theory for fixed and deformable geometries

    View/Open
    t13061_Kuenn.pdf (1.490Mb)
    Date
    2013-08
    Author
    Kuenn, Aaron Douglas
    Advisor
    Kliment, Linda K.
    Metadata
    Show full item record
    Abstract
    In this thesis, the lifting-line approximation of a flat, unswept wing, originally attributed to Prandtl, is investigated. The original formulation for a flat wing is examined in detail. The governing integro-differential equation is developed from its components. The optimum and general solutions to the original formulation are presented and discussed. An expanded formulation is presented, which includes the effect of the wake of non-planar wings. The self-induced velocities of the bound vortex on the wing are assumed to be small for practical cases and not included in the model. The case of simple dihedral is considered and the general formulation is simplified to better illustrate the effect of the geometry on the governing equation. For the simplified dihedral case, the optimal solution remains the same as for a flat wing. A simplified finite element model is also included, which accounts for the bending due to the force generated by the bound vortex. This finite element model is combined with the non-planar lifting-line equation to create a static aeroelastic model for a wing. The solution of this problem is iterative, but converges quickly. Lift coefficient and span efficiency factor are provided for a set of wing geometries for cases of dihedral and wing bending, and the trends are examined compared to flat wings. Additionally, the resulting geometries after deformation of the wing are presented and the effect of circulation distribution on the resulting shape is discussed.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering.
    URI
    http://hdl.handle.net/10057/7039
    Collections
    • AE Theses and Dissertations
    • CE Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV