• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dark grown chlorella kessleri fed corn, sorghum and lignocellulosic hydrosylates for algal biodiesel production

    View/Open
    t13055_Dandinpet.pdf (922.6Kb)
    Date
    2013-07
    Author
    Dandinpet, Kiran K.
    Advisor
    Schneegurt, Mark A.
    Metadata
    Show full item record
    Abstract
    Biodiesel production by microalgae is typically driven by photosynthetic light harvesting. Production in open ponds is hampered by high water requirements and contamination. Photobioreactor are highly engineered systems with high capital costs. Both approaches are limited by a requirement for high surface area-to-volume ratios that promote light penetration. The current study avoids these issues by growing algae heterotrophically. If algae are grown in the dark, existing bioethanol facilities may be used to co-produce, or readily be changed to produce, biodiesel. Here we fed Chlorella kessleri grown in the dark with the same corn and sorghum hydrosylates used for bioethanol production. Chlorella cultures also were grown heterotrophically in the dark on pure sugars (fructose, glucose, sucrose and a mixture of three sugars) in shake-flasks or continuously sparged and stirred bioreactors. The rate of growth in heterotrophic cultures was comparable to light-grown autotrophic cultures and mixotrophic cultures supplemented with exogenously added sugars in the light. Strong heterotrophic growth was observed for Chlorella maintained heterotrophically on corn mash, sweet sorghum juice, and sorghum mash prepared by hydrolysis of bulk grains. When these bioethanol feedstocks were added to a final concentration of 1% sugar, growth rates were comparable to pure sugar substrates. Biodiesel production was low in these experiments since no attempt was made to promote nitrogen starvation. The current study suggests that algal biodiesel production may be possible during heterotrophic growth in the dark on sugar feedstocks already in use by the biofuel industry. This provides new opportunities for flexible production of renewable liquid fuels using existing infrastructure.
    Description
    Thesis (M.S.)--Wichita State University, Fairmount College of Liberal Arts and Sciences, Dept. of Biological Sciences.
    URI
    http://hdl.handle.net/10057/7033
    Collections
    • BIO Theses
    • LAS Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV