Show simple item record

dc.contributor.authorWalsh, Mark
dc.date.accessioned2014-01-14T15:59:02Z
dc.date.available2014-01-14T15:59:02Z
dc.date.issued2013-07
dc.identifier.citationWalsh, Mark. 2013. Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics. Proceedings of the American Mathematical Society, vol. 141:no. 7:pp. 2475-2484,Article no. PII S 0002-9939(2013)11647-3en_US
dc.identifier.issn0002-9939
dc.identifier.otherWOS:000326571900025
dc.identifier.urihttp://dx.doi.org/10.1090/S0002-9939-2013-11647-3
dc.identifier.urihttp://hdl.handle.net/10057/6989
dc.descriptionClick on the DOI link to access the article (may not be free).en_US
dc.description.abstractLet X and Y be a pair of smooth manifolds, each obtainable from the other by surgery in codimension at least three. We show that the corresponding spaces Riem(+)(X) and Riem(+)(Y), respectively consisting of Riemannian metrics of positive scalar curvature on X and Y, are homotopy equivalent. This result is originally due to V. Chernysh but remains unpublished.en_US
dc.language.isoen_USen_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.ispartofseriesProceedings of the American Mathematical Society;v.141:no.7
dc.subjectManifoldsen_US
dc.titleCobordism invariance of the homotopy type of the space of positive scalar curvature metricsen_US
dc.typeArticleen_US
dc.rights.holderCopyright © 2013 American Mathematical Society


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record