Show simple item record

dc.contributor.advisorKwon, Hyuck M.en_US
dc.contributor.authorTayem, Nizar Abdel-Hafeeth Mohammad
dc.identifier.otherAAT 3189244 UMI
dc.descriptionThesis (Ph.D.)--Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering.en
dc.description"May 2005."en
dc.description.abstractIn array signal processing, estimation of the direction of arrival angle (DOA) from multiple sources plays an important role in the array processing area, because both the base and mobile stations can employ multiple antenna array elements, and their array signal processing can increase the capacity and throughputs of the system significantly. In most of the applications, the first task is to estimate the DOAs of incoming signals. This information about the DOA can be used to localize the signal sources. In the first part of this research work, we propose a scheme to estimate one-dimensional (1-D) and two-dimensional (2-D) direction of arrival angles (DOAs) estimation for multiple incident signals at an array of antennas. The proposed scheme does not require pair matching for 2-D DOA estimation. Also, the proposed scheme gives good performance under the high and low signal-to-noise ratio (SNR). In the second part of this research, we propose 1-D and 2-D DOA estimation schemes which employ the Propagator Method (PM) without using any eigenvalue decomposition (EVD) or singularvalue decomposition (SVD) to reduce the computational complexity. The proposed schemes avoid estimation failures for any angle of arrival in any region of practical interest in mobile communication systems compared to existing schemes. In the third part, we propose 1-D and 2-D DOA methods for coherent and noncoherent sources under the assumption of different cases of unknown noise covariance matrix. In the first case, the unknown noise covariance matrix is spatially uncorrelated with non-uniform or uniform noise power in the diagonal. In the second case, the unknown noise covariance matrix is correlated in a symmetric Toeplitz form.en
dc.format.extent843355 bytes
dc.rightsCopyright Nizar Abdel-Hafeeth Mohammad Tayem, 2005. All rights reserved.en
dc.subject.lcshElectronic dissertationsen
dc.titleDirection of arrival angle estimation schemes for wireless communication systemsen

Files in this item


This item appears in the following Collection(s)

  • CE Theses and Dissertations
    Doctoral and Master's theses authored by the College of Engineering graduate students
  • Dissertations
    This collection includes Ph.D. dissertations completed at the Wichita State University Graduate School (Fall 2005 --)
  • EECS Theses and Dissertations
    Collection of Master's theses and Ph.D. dissertations completed at the Dept. of Electrical Engineering and Computer Science

Show simple item record