• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reactive power control functions for distributed PV sources

    View/Open
    t13037_Ravindran.pdf (1.347Mb)
    Date
    2013-05
    Author
    Ravindran, Vinoth Kumar
    Advisor
    Aravinthan, Visvakumar
    Metadata
    Show full item record
    Abstract
    The integration of distributed generation is one of the biggest changes facing the power industry, with greenhouse gas mitigation and the smart grid initiative. With result of the increasing penetration of grid-connected distributed generators, such as solar photovoltaic (PV) sources the system voltage regulation becomes challenging. Specifically, capacitor banks and step voltage regulators that normally boost voltage slightly may push utilization voltages either above or below the adopted ANSI voltage limits because of the variable nature of PV sources. This can adversely affect the expected reliability requirements for the utility and also decrease the life span of voltage-regulating equipment due to excessive operations. This thesis work studies the effects of large-scale penetration of distributed PV sources using several IEEE radial distribution test feeders. Based on the simulation results, tap-changer excessive operations, voltage fluctuations, and voltage rise in the feeders are identified, and the additional capacity of reactive power control of inverters to minimize the voltage fluctuations is analyzed. With the presence of a communication infrastructure, it is expected that distributed generators could be more efficiently operated, especially the inverters, which will be able to perform several grid support functions including voltage regulation and reactive power support. Therefore, this work also focuses on developing a power loss minimization technique while utilizing the additional benefits of dispatchable reactive power from a cluster of distributed resources. The proposed technique is tested using IEEE 13- and 34-node test feeders, and the results show that the proposed technique will minimize the real power loss in the radial distribution feeders.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science
    URI
    http://hdl.handle.net/10057/6835
    Collections
    • CE Theses and Dissertations
    • EECS Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV