Show simple item record

dc.contributor.authorYao, Li
dc.contributor.authorPhan, Francis
dc.contributor.authorLi, Yongchao
dc.date.accessioned2013-10-18T16:32:08Z
dc.date.available2013-10-18T16:32:08Z
dc.date.issued2013-09-09
dc.identifier.citationYao, Li; Phan, Francis; Li, Yongchao. 2013. Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Research & Therapy, v.4:no.5en_US
dc.identifier.issn1757-6512
dc.identifier.otherWOS:000324822800001
dc.identifier.urihttp://dx.doi.org/10.1186/scrt320
dc.identifier.urihttp://hdl.handle.net/10057/6580
dc.descriptionThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.description.abstractIntroduction: Microspheres fabricated from natural materials serve as a promising biodegradable and biocompatible carrier in a small volume for efficient cell delivery to the lesion of the injured neural tissue to generate biological functions. As the major component of extracellular matrix and due to its natural abundance within the body, collagen may be fabricated into microspheres and improve the ability of pre-seeded cells on the microspheres to encounter the hostile micro-environment in the lesion. Methods: In this study, collagen microspheres were fabricated using the water-in-oil emulsion technique and crosslinked with 1-ethyl-3-(3-dimethylaminopropryl) carbodiimide. Oligodendrocyte progenitor cells isolated from postnatal day P1 to 2 rats were cultured and differentiated on the microspheres. The microspheres carrying the oligodendrocyte progenitor cells were co-cultured with dorsal root ganglions from 15-day-old rat embryos. The myelination formation was studied for the co-culture of oligodendrocyte progenitor cells and dorsal root ganglions. Results: We showed that the viability of oligodendrocyte progenitor cells, B104 cells and PC12 cells grown on microspheres was not significantly different with those in cell culture plates. Oligodendrocyte progenitor cells differentiated into oligodendrocytes on collagen microspheres. The oligodendrocytes grown on microspheres extended processes that wrapped the axons of dorsal root ganglion neurons and the formation of myelin sheath was observed in the co-culture. Conclusions: This study demonstrates the feasibility of collagen microspheres in further applications for the delivery of neural progenitor cells for neural regeneration.en_US
dc.description.sponsorshipNational Center for Research Resources (P20 RR016475) and the National Institute of General Medical Sciences (P20 GM103418) from the National Institutes of Health, and Award for Research/Creative Projects (ARCS), Wichita State University.en_US
dc.language.isoen_USen_US
dc.publisherBiomed Central LTDen_US
dc.relation.ispartofseriesStem Cell Research & Therapy;v.4:no.5
dc.subjectMicrosphereen_US
dc.subjectOligodendrocyteen_US
dc.subjectCell deliveryen_US
dc.subjectCo-cultureen_US
dc.subjectNeural regenerationen_US
dc.subjectDorsal root ganglionen_US
dc.titleCollagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitroen_US
dc.typeArticleen_US
dc.description.versionPeer reviewed
dc.rights.holder© 2013 Yao et al.;


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record