• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrating conceptual and logical couplings for change impact analysis in software

    Date
    2013-10
    Author
    Kagdi, Huzefa Hatimbhai
    Gethers, Malcom
    Poshyvanyk, Denys
    Metadata
    Show full item record
    Citation
    Kagdi, Huzefa Hatimbhai; Gethers, Malcom; Poshyvanyk, Denys. 2013. Integrating conceptual and logical couplings for change impact analysis in software. Empirical Software Engineering October 2013, v.18:no.5:pp 933-969
    Abstract
    The paper presents an approach that combines conceptual and evolutionary techniques to support change impact analysis in source code. Conceptual couplings capture the extent to which domain concepts and software artifacts are related to each other. This information is derived using Information Retrieval based analysis of textual software artifacts that are found in a single version of software (e.g., comments and identifiers in a single snapshot of source code). Evolutionary couplings capture the extent to which software artifacts were co-changed. This information is derived from analyzing patterns, relationships, and relevant information of source code changes mined from multiple versions in software repositories. The premise is that such combined methods provide improvements to the accuracy of impact sets compared to the two individual approaches. A rigorous empirical assessment on the changes of the open source systems Apache httpd, ArgoUML, iBatis, KOffice, and jEdit is also reported. The impact sets are evaluated at the file and method levels of granularity for all the software systems considered in the empirical evaluation. The results show that a combination of conceptual and evolutionary techniques, across several cut-off points and periods of history, provides statistically significant improvements in accuracy over either of the two techniques used independently. Improvements in F-measure values of up to 14% (from 3% to 17%) over the conceptual technique in ArgoUML at the method granularity, and up to 21% over the evolutionary technique in iBatis (from 9% to 30%) at the file granularity were reported.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1007/s10664-012-9233-9
    http://hdl.handle.net/10057/6414
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV