• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • EECS Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementing gate operations between uncoupled qubits in linear nearest neighbor arrays using a learning algorithm

    Date
    2013-07
    Author
    Garigipati, Rudrayya Chowdary
    Kumar, Preethika
    Metadata
    Show full item record
    Citation
    Garigipati, Rudrayya Chowdary; Kumar, Preethika. 2013. Implementing gate operations between uncoupled qubits in linear nearest neighbor arrays using a learning algorithm. Quantum Information Processing, v.12:no.7:pp.2291-2308
    Abstract
    We propose a new scheme to implement gate operations in a one dimensional linear nearest neighbor array, by using dynamic learning algorithm. This is accomplished by training quantum system using a back propagation technique, to find the system parameters that implement gate operations directly. The key feature of our scheme is that, we can reduce the computational overhead of a quantum circuit by finding the parameters to implement the desired gate operation directly, without decomposing them into a sequence of elementary gate operations. We show how the training algorithm can be used as a tool for finding the parameters for implementing controlled-NOT (CNOT) and Toffoli gates between next-to-nearest neighbor qubits in an Ising-coupled linear nearest neighbor system. We then show how the scheme can be used to find parameters for realizing swap gates first, between two adjacent qubits and then, between two next-to-nearest-neighbor qubits, in each case without decomposing it into 3 CNOT gates. Finally, we show how the scheme can be extended to systems with non-diagonal interactions. To demonstrate, we train a quantum system with Heisenberg interactions to find the parameters to realize a swap operation.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1007/s11128-013-0526-8
    http://hdl.handle.net/10057/6135
    Collections
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV