• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Increased stability in the continuation of solutions to the Helmholtz equation

    Date
    2004-05-03
    Author
    Hrycak, Tomasz
    Isakov, Victor
    Metadata
    Show full item record
    Citation
    Hrycak, Tomasz and Victor Isakov. 2004. Increased stability in the continuation of solutions to the Helmholtz equation. Inverse Problems, v.20 no.697: 475-501
    Abstract
    In this paper we give analytical and numerical evidence of increasing stability in the Cauchy Problem for the Helmholtz equation when frequency is growing. This effect depends on convexity properties of the surface where the Cauchy Data are given. Proofs use Carleman estimates and the theory of elliptic boundary value problems in Sobolev spaces. Our numerical testing is handling the nearfield acoustical holography and it is based on the single layer representation algorithm.
    Description
    Click on the DOI link to access the article (may not be free)
    URI
    http://hdl.handle.net/10057/6071
    http://dx.doi.org/10.1088/0266-5611/20/3/004
    Collections
    • MATH Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV