Show simple item record

dc.contributor.authorElcrat, Alan R.
dc.contributor.authorKim, Tae-Eun
dc.contributor.authorTreinen, Ray
dc.date.accessioned2013-07-25T17:14:42Z
dc.date.available2013-07-25T17:14:42Z
dc.date.issued2004-05-01
dc.identifier.citationElcrat, A., T. E. Kim, et al. (2004). "Annular capillary surfaces." Archiv der Mathematik 82(5): 449-467.en_US
dc.identifier.issn0003-889X
dc.identifier.issn1420-8938
dc.identifier.urihttp://hdl.handle.net/10057/6057
dc.identifier.urihttp://dx.doi.org/10.1007/s00013-003-0101-0
dc.descriptionClick on the DOI link to access the article (may not be free)en_US
dc.description.abstractThe meniscus in a symmetric annular capillary tube is investigated. The contact angles on the inner and outer tube surface need not be the same. Existence and qualitative properties of solutions are obtained using an iteration similar to that used by Johnson and Perko in the case of a circular capillary tube. If the contact angles have the same sign ideas of Siegel are used to give asymptotic estimates using circular arcs as comparison curves.en_US
dc.language.isoen_USen_US
dc.publisherBirkhäuser-Verlag, Baselen_US
dc.relation.ispartofseriesArchiv der Mathematik;v.82 no.5
dc.subject76B45
dc.subject49Q10
dc.subject35J60
dc.subject35J65
dc.titleAnnular capillary surfacesen_US
dc.typeArticleen_US
dc.description.versionPeer reviewed
dc.rights.holderCopyright © 2004, Birkhäuser-Verlag


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record