dc.contributor.author | DeLillo, Thomas K. | |
dc.contributor.author | Driscoll, T. A. | |
dc.contributor.author | Elcrat, Alan R. | |
dc.contributor.author | Pfaltzgraff, J. A. | |
dc.date.accessioned | 2013-07-23T22:22:29Z | |
dc.date.available | 2013-07-23T22:22:29Z | |
dc.date.issued | 2008-07-08 | |
dc.identifier.citation | DeLillo, T. K., T. A. Driscoll, et al. (2008). "Radial and circular slit maps of unbounded multiply connected circle domains." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 464(2095): 1719-1737. | en_US |
dc.identifier.issn | 1364-5021 | |
dc.identifier.issn | 1471-2946 | |
dc.identifier.uri | http://hdl.handle.net/10057/6035 | |
dc.identifier.uri | http://dx.doi.org/10.1098/rspa.2008.0006 | |
dc.description | Click on the DOI link to access the article for free at the publisher's website. | en_US |
dc.description.abstract | Infinite product formulae for conformally mapping an unbounded multiply connected
circle domain to an unbounded canonical radial or circular slit domain, or to domains
with both radial and circular slit boundary components are derived and implemented
numerically and graphically. The formulae are generated by analytic continuation with
the reflection principle. Convergence of the infinite products is proved for domains with
sufficiently well-separated boundary components. Some recent progress in the numerical
implementation of infinite product mapping formulae is presented. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | The Royal Society | en_US |
dc.relation.ispartofseries | Proceedings of the Royal Society A;v.464 no.2095 | |
dc.subject | Conformal maps | en_US |
dc.subject | Multiply connected domains | |
dc.subject | Canonical domains | |
dc.title | Radial and circular slit maps of unbounded multiply connected circle domains | en_US |
dc.type | Article | en_US |
dc.description.version | Peer reviewed | |
dc.rights.holder | Copyright 2008 The Royal Society | |