• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Polymethylmethacrylate and titanium alloy particles activate peripheral monocytes during periprosthetic inflammation and osteolysis

    Date
    2011-05
    Author
    Yang, Shang-You
    Zhang, Kai
    Bai, Ling
    Song, Zheng
    Yu, Haiying
    McQueen, David A.
    Wooley, Paul H.
    Metadata
    Show full item record
    Citation
    Yang, S.-Y., Zhang, K., Bai, L., Song, Z., Yu, H., McQueen, D. A. and Wooley, P. H. (2011), Polymethylmethacrylate and titanium alloy particles activate peripheral monocytes during periprosthetic inflammation and osteolysis. J. Orthop. Res., 29: 781–786. doi: 10.1002/jor.21287
    Abstract
    We investigated the interactions of particulate PMMA or titanium alloy, patient blood monocytes, and periprosthetic tissues using a SCID-hu model of aseptic loosening. Periprosthetic tissues and bone chips obtained at revision surgery for loosening were transplanted into muscles of SCID mice. Peripheral blood monocytes (PBMCs) isolated from the same donors were fluorescently labeled and co-cultured with PMMA or Ti-6Al-4V particles before intraperitoneal injection. Control mice with periprosthetic tissue or non-inflammatory ligament xenografts received naive PBMCs transfusion. Mice were euthanized 2 weeks after PBMC transfusion. The human tissues were well accepted in SCID mice. Transfused fluorescent-labeled PBMCs were markedly accumulated in transplanted periprosthetic tissues. Multinucleated osteoclast-like cells were commonly seen within retrieved xenograft tissue, and focal bone erosions were ubiquitous. Total cell densities and CD68+ cells within the xenograft were significantly increased in mice transfused with PMMA and Ti-provoked PBMCs compared to the naïve PBMC animals (p < 0.05). Immunohistochemical staining identified much stronger positive IL-1 and TNF stains in xenografts from either PMMA or Ti-stimulated monocytes transfusion groups (p < 0.05). TRAP+ cells were found around bone chips in both activated-PBMCs groups, although markedly more aggregated TRAP+ cells in the PMMA-challenged group than in the titanium group (p < 0.05). MicroCT assessment confirmed the significant decrease of bone mineral density in chips interacted with activated-monocytes/osteoclasts. In conclusion, PMMA or titanium particles readily activate peripheral monocytes and promote the cell trafficking to the debris-containing prosthetic tissues. Particles-provoked PBMCs participated in and promoted the local inflammatory process, osteoclastogenesis, and bone resorption.
    Description
    Click on the DOI link to access this article (may not be free)
    URI
    http://dx.doi.org/10.1002/jor.21287
    http://hdl.handle.net/10057/5952
    Collections
    • BIO Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV