On uniqueness in the inverse conductivity problem with local data
Citation
Isakov, Victor. 2007. On uniqueness in the inverse conductivity problem with local data. -- Inverse Problems and Imaging, v.1, no.1: 95 - 105.
Abstract
We show that the Dirichlet-to-Neumann map given on an arbitrary part of the boundary of a three-dimensional domain with zero Dirichlet (or Neumann) data on the remaining (spherical or plane) part of the boundary uniquely determines conductivity or potential coefficients. This is the first uniqueness result for the Calderon problem with zero data on inaccessible part of the boundary. Proofs use some modification of the method of complex geometrical solutions due to Calderon-Sylvester-Uhlmann.
Description
Click on the DOI link to access the article