• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Oxidative stress in phenylketonuria animal model

    Date
    2002-05
    Author
    Ercal, N.
    Aykin-Burns, N.
    Gurer-Orhan, H.
    McDonald, J. David
    Metadata
    Show full item record
    Citation
    Ercal, N.; Aykin-Burns, N.; Gurer-Orhan, H.; McDonald, J. David. 2002. Oxidative stress in phenylketonuria animal model. Free Radical Biology and Medicine, v.32 no.9 pp.906-911
    Abstract
    Oxidative stress is seen in various metabolic disorders for unknown reasons. Oxidative stress is defined as an imbalance between pro-oxidant and antioxidant status in favor of the former. This study investigated whether oxidative stress exists in phenylketonuria (PKU) using the BTBR-Pah(enu2) animal model for PKU. Animals (14-24 weeks old) were sacrificed and brain and red blood cells (RBCs) were obtained aseptically. The lipid peroxidation by-product, evaluated as malondialdehyde (MDA), was significantly higher in the brains and RBCs of PKU animals (n = 6) than in controls (n = 6). Glutathione/glutathione disulfide, a good indicator for tissue thiol status, was significantly decreased both in the brains and RBCs. Some antioxidant enzymes were also analyzed in RBCs, including glucose-6-phosphate dehydrogenase (G6PD), which provides the RBC's main reducing power, reduced nicotinamide adenine dinucleotide phosphate (NADPH), and catalase detoxifies H2O2 by catalyzing its reduction to O2 and H2O. Both catalase and G6PD were significantly increased in the RBCs of PKU animals.
    Description
    Click on the DOI link to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/S0891-5849(02)00781-5
    http://hdl.handle.net/10057/5633
    Collections
    • BIO Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV