• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multicriteria analysis of power generation expansion planning

    View/Open
    Dissertation (766.2Kb)
    Date
    2006-07
    Author
    Meza, Jose L. Ceciliano
    Advisor
    Yildirim, Mehmet Bayram
    Metadata
    Show full item record
    Abstract
    This thesis describes and evaluates a set of multiobjective generation expansion planning models that include four objectives and importance given to renewable generation technologies while considering location of generation units. Using multicriteria decision making theory, these models provide results which indicate the most recommendable amount of each type of generating technology to install at each location. A framework to solve and generate alternative solutions is provided for each model, and representative case studies from the Mexican Electric Power System are used to show the performance of the proposed models and solution methods. The models include a single-period model, a multi-period model, single-period mixed-integer non-linear model, and a fuzzy multi-criteria model. Among the attributes considered are the investment and operation cost of the units, the environmental impact, the amount of imported fuel, and the portfolio investment risk. The approaches to solve the models are based on multiobjective linear programming, analytical hierarchy process, and evolutionary algorithms. The incorporation of more than three criteria to generate the expansion alternatives, the importance given to renewable generation technologies, and the geographical location of the new generation units are some features of the proposed models which have not been considered simultaneously in the literature. A novel multiobjective evolutionary programming algorithm has been proposed in this thesis.
    Description
    "July 2006."
    URI
    http://hdl.handle.net/10057/547
    Collections
    • CE Theses and Dissertations
    • Dissertations
    • ISME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV