Synthesizing drug-carrying nanocomposite sphere for targeted drug delivery

Loading...
Thumbnail Image
Issue Date
2009-03-12
Embargo End Date
Authors
Gopu, Janani Sri
Cooper, Bailey
Asmatulu, Ramazan
Advisor
Citation
Abstract

Magnetic targeting is a promising method of drug localization. Controlled delivery occurs when a drug is associated with a biodegradable polymer and magnetic nanoparticles so the drug molecules are continuously released from the composite structure to the area of interest In this study, drug-carrying magnetic nanocomposite spheres were synthesized using magnetite nanoparticles and poly (D,L-lactide-co-glycolide) (PLGA) for the purpose of magnetic targeted drug delivery. Magnetic nanoparticles (~13 nm on average) of magnetite were prepared by a chemical co-precipitation of ferric and ferrous chloride salts in the presence of a strong basic solution (ammonium hydroxide). An oil-in-oil emulsion/solvent evaporation technique was conducted at 7000 rpm and 1.5-2 hrs agitation for the synthesis of nanocomposite spheres. Specifically, PLGA and drug were first dissolved in acetonitrile (oily phase I) and combined with magnetic nanoparticles, then added drop-wise into viscous paraffin oil combined with Span 80 (oily phase II). Nanocomposite spheres with different contents of magnetite (0%, 10%, 20%, and 25%) were evaluated in terms of particle size, morphology and magnetic properties by using dynamic laser light scattering (DLLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a superconducting quantum interference device (SQUID). The results indicate that nanocomposite spheres (200 nm to 1.1 mmin diameter) are superparamagnetic above the blocking temperature near 40 K and their magnetization saturates above 5,000 degree C at room temperature.

Table of Content
Description
The project completed at the Wichita State University Department of Mechanical Engineering. Presented at the 6th Annual Capitol Graduate Research Summit, Topeka, KS, 2009
publication.page.dc.relation.uri
DOI