• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact dynamics of mechanical systems and structures, and applications in crash energy management, impulse mitigation, and impact injury biomechanics

    View/Open
    Dissertation (5.110Mb)
    d12014_Moradi_Rasoul.pdf (5.091Mb)
    Date
    2012-05
    Author
    Moradi, Rasoul
    Advisor
    Lankarani, Hamid M.
    Metadata
    Show full item record
    Abstract
    Among the different load conditions on a mechanical system, impact loading and its contribution to the design process require special consideration. The static methods of stress, strain, and deflection analyses are not applicable under impact conditions. The main goal of this study is to address the fundamental aspects of impact and to examine its applications for different design requirements. First, different approaches to the impact phenomena, namely stereomechanics, contact mechanics, stress wave propagation, finite element method, and energy method are investigated in this dissertation. The advantages and disadvantages of each method are pointed out, and the areas of application of each method and the degree of accuracy are examined. Quantification of energy absorption during impact is the most complicated part of impact modeling and is one of the topics of interest addressed in this dissertation. Application of the impact analysis methodologies in vehicular accidents and protection of occupants are the eventual goals of this research, demonstrated using some case studies and applicable examples. Because occupant safety is a major concern in the automobile and aerospace industries, a crashworthy design must be able to dissipate the kinetic energy of impact in a controlled manner. Four test cases or applications related to impact energy management or dissipation, impulse mitigation, and impact injury biodynamics are thus presented. The application examples include the design of a truck side guard and quantification of its effects on reducing occupant injury in the collison of a small car with a truck; lumbar load attenuation for seated occupants of a rotorcraft; injuries to pedestrians impacted by a sport or utility vehicle equipped with a frontal guard; and investigation of a motorcyclist impact with roadside barriers. For each case, an analysis methodolgy is developed, and from the modeling and simulations, impact design issues are addressed.
    Description
    Thesis (Ph.D.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
    URI
    http://hdl.handle.net/10057/5363
    Collections
    • CE Theses and Dissertations
    • Dissertations
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV