• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Volumes sampled for hardness and for modulus of elasticity during nanoindentation testing

    Date
    2012-06-28
    Author
    Kashani, Mahdi Saket
    Gilvan, Akbar Aftabi
    Madhavan, Viswanathan
    Metadata
    Show full item record
    Citation
    Mahdi Saket Kashani, Akbar Aftabi Gilvan and Vis Madhavan (2012). Volumes sampled for hardness and for modulus of elasticity during nanoindentation testing. Journal of Materials Research, 27 , pp 1553-1564 doi:10.1557/jmr.2012.107
    Abstract
    In this article, the sizes of the volumes sampled by nanoindentation tests for hardness and modulus measurements are studied using finite element simulations. The zones of influence for hardness and modulus in single-phase systems are determined by modeling a hemispherical particle in a matrix, with properties close to those of each other, and monitoring the deviation of the measured values from those of the particle. It is found that, for hardness testing of elastic-perfectly plastic materials, the intrinsic hardness of the particle is measured as long as the plastic region is still within the particle, i.e., the contact radius is one half or less of the particle radius. Thus, in a hardness test of a single-phase material, all of the plastically deforming material, and only the plastically deforming material, contributes to the hardness measured. In contrast, the zone influencing the modulus is not restricted to a specific volume near the indenter. The modulus measured from the elastic response at the indentation point is dependent upon the entire specimen. A relationship is developed to describe the observed behavior of the measured modulus, that holds true for both sink-in and pile-up material behavior and for different indenter cone angles.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://hdl.handle.net/10057/5236
    http://dx.doi.org/10.1557/jmr.2012.107
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV