• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Mathematics, Statistics, and Physics
    • MATH Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Consistent Estimation of Distributions with Type II Bias with Applications in Competing Risks Problems

    View/Open
    Research article (189.7Kb)
    Date
    2004-02
    Author
    El Barmi, Hammou
    Mukerjee, Hari
    Metadata
    Show full item record
    Citation
    Barmi, H. E. and H. Mukerjee (2004). "Consistent Estimation of Distributions with Type II Bias with Applications in Competing Risks Problems." The Annals of Statistics 32(1): 245-267.
    Abstract
    A random variable X is symmetric about 0 if X and -X have the same distribution. There is a large literature on the estimation of a distribution function (DF) under the symmetry restriction and tests for checking this symmetry assumption. Often the alternative describes some notion of skewness or one-sided bias. Various notions can be described by an orderingo f the distributionso f X and -X. One such importanto rderingi s that P(O < X < x) - P(-x < X < 0) is increasing in x > 0. The distribution of X is said to have a Type II positive bias in this case. If X has a density f, then this corresponds to the density ordering f(-x) < f(x) for x > 0. It is known that the nonparametricm aximum likelihood estimator (NPMLE) of the DF under this restriction is inconsistent. We provide a projection-type estimator that is similar to a consistent estimator of two DFs under uniform stochastic ordering, where the NPMLE also fails to be consistent. The weak convergence of the estimator has been derived which can be used for testing the null hypothesis of symmetry against this one-sided alternative. It also turns out that the same procedure can be used to estimate two cumulative incidence functions in a competing risks problem under the restriction that the cause specific hazard rates are ordered. We also provide some real life examples.
    Description
    Open access
    URI
    http://hdl.handle.net/10057/5208
    http://dx.doi.org/10.1214/aos/1079120136
    http://projecteuclid.org/euclid.aos/1079120136
    Collections
    • MATH Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV