• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inhibitors of Dengue Virus and West Nile Virus proteases based on the aminobenzamide scaffold

    View/Open
    Article (1.100Mb)
    Date
    2012-05-10
    Author
    Aravapalli, Sridhar
    Lai, Huiguo
    Teramoto, Tadahisa
    Alliston, Kevin R.
    Lushington, Gerald H.
    Ferguson, Eron L.
    Padmanabhan, Radhakrishnan
    Groutas, William C.
    Metadata
    Show full item record
    Citation
    Aravapalli, Sridhar; Lai, Huiguo; Teramoto, Tadahisa ; Alliston, Kevin R.; Lushington, Gerald H. ; Ferguson, Eron L. ; Padmanabhan, R. & William C., Groutas. 2012. Inhibitors of Dengue Virus and West Nile Virus proteases based on the aminobenzamide scaffold. Bioorganic & Medicinal Chemistry, Available online 10 May 2012
    Abstract
    Dengue and West Nile viruses (WNV) are mosquito-borne members of flaviviruses that cause significant morbidity and mortality. There is no approved vaccine or antiviral drugs for human use to date. In this study, a series of functionalized meta and para aminobenzamide derivatives were synthesized and subsequently screened in vitro against Dengue virus and West Nile virus proteases. Four active compounds were identified which showed comparable activity toward the two proteases and shared in common a meta or para(phenoxy)phenyl group. The inhibition constants (Ki) for the most potent compound 7n against Dengue and West Nile virus proteases were 8.77 and 5.55 μM, respectively. The kinetics data support a competitive mode of inhibition of both proteases by compound 7n. This conclusion is further supported by molecular modeling. This study reveals a new chemical scaffold which is amenable to further optimization to yield potent inhibitors of the viral proteases via the combined utilization of iterative medicinal chemistry/structure-activity relationship studies and in vitro screening.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://hdl.handle.net/10057/5125
    http://dx.doi.org/10.1016/j.bmc.2012.04.055
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV