• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Industrial, Systems, and Manufacturing Engineering
    • ISME Faculty Scholarship
    • ISME Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Climate zones and the influence on industrial nonprocess energy consumption

    Date
    2011
    Author
    Bawaneh, Khaled
    Overcash, Michael
    Twomey, Janet M.
    Metadata
    Show full item record
    Citation
    Bawaneh K., Overcash M., and Twomey J. 2011. "Climate zones and the influence on industrial nonprocess energy consumption". Journal of Renewable and Sustainable Energy. 3 (6).
    Abstract
    This paper begins with the recognition that climate zones influence nonprocess energy use in industrial buildings. Nonprocess energies are heating, cooling, lighting, and ventilation. Nonprocess energy data have been collected from the literature (about 68 buildings) across a wide range of climate zones. The hypothesis tested in this research is: if an industrial building has a characteristic nonprocess energy related to physical dimensions and desired comfort level, then using cooling degrees day (CDD) and heating degrees day (HDD) factors can normalize the measured nonprocess temperature control data for the climate zone differences. That is, do measured nonprocess energy intensities (W/m(2)), if corrected for climate zone differences, within each building category become more similar and hence reflecting the basic building temperature control energy use? The five U. S. climate zones and the location for each facility in this study were identified. To investigate how the l! ocation influences the amount of heating and cooling at each facility, a baseline analysis of five representative cities in each zone was done to obtain the 5-year average CDD and HDD. The reported values of heating and cooling for each facility were then adjusted using this baseline and the climate zones of that facility, so that each facility was then referenced to zone 3; that is, as if all manufacturing facilities were in the same zone 3. The mean, median, standard deviation, and total nonprocess energies for current and zone-adjusted nonprocess energy for each facility in this study were calculated. The mean values of current and adjusted heating and cooling remained close to each other and the standard deviation was not reduced by these adjustments. Thus, the hypothesis of using CDD/HDD to quantitatively account for and hence to adjust for different climate zones appears to not be valid. The absence of improvement (reducing the standard deviation) by normalizing heati! ng and cooling energy using adjustment for climate factors usi! ng the c oncept of CDD/HDD implies that some other correction principles are needed for evaluating fundamental needs for industrial building heating and cooling. The inability to reduce the geographic (that is, climate zone) effects of industrial plant nonprocess energy intensities supports the de-emphasis of this tool in the ASHRAE Handbook.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://hdl.handle.net/10057/4491
    http://dx.doi.org/10.1063/1.3670513
    Collections
    • ISME Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV