• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Aerospace Engineering
    • AE Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Aerospace Engineering
    • AE Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical simulations of pulsatile flow in an end-to-side anastomosis model

    View/Open
    Hoffmann_2007 (20.69Kb)
    Date
    2007-03
    Author
    Shaik, Eleyas
    Hoffmann, Klaus A.
    Dietiker, JF.
    Metadata
    Show full item record
    Citation
    Shaik E, KA Hoffmann, and JF Dietiker. 2007. "Numerical simulations of pulsatile flow in an end-to-side anastomosis model". Molecular & Cellular Biomechanics : MCB. 4 (1): 41-53.
    Abstract
    A potential interaction between the local hemodynamics and the artery wall response has been suggested for vascular graft failure by intimal hyperplasia (IH). Among the various hemodynamic factors, wall shear stress has been implicated as the primary factor responsible for the development of IH. In order to explore the role of hemodynamics in the formation of IH in end-to-side anastomosis, computational fluid dynamics is employed. To validate the numerical simulations, comparisons with existing experimental data are performed for both steady and pulsatile flows. Generally, good agreement is observed with the velocity profiles whereas some discrepancies are found in wall shear stress (WSS) distributions. Using the same end-to-side anastomosis geometry, numerical simulations are extended using a femoral artery waveform to identify the possible role of unsteady hemodynamics. In the current simulations, Carreau-Yasuda model is used to account for the non-Newtonian nature of blood. Computations indicated a disturbed flow field at the artery-graft junction leading to locally elevated shear stresses on the vascular wall. Furthermore, the shear stress distribution followed the same behavior with oscillating magnitude over the entire flow cycle. Thus, distal IH observed in end-to-side artery-graft models may be caused by the fluctuations in WSS's along the wall.
    Description
    Click on the DOI link below to access the article(may not be free)
    URI
    http://hdl.handle.net/10057/4453
    http://dx.doi.org/10.3970/mcb.2007.004.041
    Collections
    • AE Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV