• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rational approach to selective and direct 2-O-alkylation of 5,6-O-isopropylidine-L-ascorbic acid

    Date
    2004-10-15
    Author
    Olabisi, Ayodele O.
    Wimalasena, Kandatege
    Metadata
    Show full item record
    Citation
    The Journal of organic chemistry. 2004 Oct 15; 69(21): 7026-32.
    Abstract
    l-Ascorbic acid is a versatile radical scavenger widely distributed in aerobic organisms that plays a central role in the protection of cellular components against oxidative damage by free radicals and oxidants. It also functions as a physiological reductant for key enzymatic transformations in catecholamine neurotransmitters, amidated peptide hormones, and collagen biosynthetic pathways. Simple derivatives of l-ascorbic acid have been shown to possess antioxidant, antitumor, and immunostimulant activities. The antioxidant and redox properties of l-ascorbic acid are closely associated with the electron-rich 2,3-enediol moiety of the molecule, and therefore, selective functionalization of the 2- and 3-OH groups is essential for the detailed structure-activity studies. Reactions of 5- and 6-OH-protected ascorbic acid with electrophilic reagents exclusively produce the corresponding 3-O-alkylated products under mild basic conditions due to the high nucleophilicity of the C-3-OH. Based on the density functional theory (B3LYP) electron density calculations, we have devised a novel and general method for the direct alkylation of the 2-OH group of ascorbic acid with complete regio- and chemoselectivity. We have also carried out a complete spectroscopic analysis of two complementary series of 2-O-acetyl-3-O-alkyl- and 2-O-alkyl-3-O-acetylascorbic acid derivatives to define their spectroscopic characteristics and to resolve common inconsistencies in the literature.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://dx.doi.org/10.1021/jo049319i
    http://hdl.handle.net/10057/4409
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV