• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    P(450)/NADPH/O(2)- and P(450)/PhIO-catalyzed N-dealkylations are mechanistically distinct

    Date
    2005-02-09
    Author
    Bhakta, Mehul N.
    Hollenberg, Paul F.
    Wimalasena, Kandatege
    Metadata
    Show full item record
    Citation
    Journal of the American Chemical Society. 2005 Feb 9; 127(5): 1376-7.
    Abstract
    A high-valent iron-oxo species analogous to the compound I of peroxidases has been thought to be the activated oxygen species in P450-catalyzed reactions. Spectroscopic characterization of the catalytically competent iron-oxo species in iodosobenzene (PhIO)-supported model reactions and parallels between these model reactions and PhIO- and NADPH/O2-supported P450 reactions have been taken as strong evidence for this proposal. To support this proposal, subtle differences observed in regio- and chemoselectivities, isotope effects, and source of oxygen, etc., between NADPH/O2- and PhIO-supported P450 reactions have been generally attributed to reasons other than the mechanistic differences between the two systems. In the present study, we have used a series of sensitive mechanistic probes, 4-chloro-N-cyclopropyl-N-alkylanilines, to compare and contrast the chemistries of the NADPH/O2- and PhIO-supported purified CYP2B1 N-dealkylation reactions. Herein we present the first experimental evidence to demonstrate that the NADPH/O2- and PhIO-supported P450 N-dealkylations are mechanistically distinct and, thus, the P450/PhIO system may not be a good mechanistic model for P450/NADPH/O2-catalyzed N-dealkylations.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://dx.doi.org/10.1021/ja0436143
    http://hdl.handle.net/10057/4399
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV