• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulated speed distributions for effusing gases in the transition region

    Date
    2005-10-06
    Author
    Wahlbeck, Phillip G.
    Metadata
    Show full item record
    Citation
    The journal of physical chemistry. A. 2005 Oct 6; 109(39): 8944-9.
    Abstract
    Monte Carlo techniques were used to evaluate the flow of molecules through an ideal orifice (effusion) as predicted by isotropy-failure theory. Binary collisions of molecules were treated using classical mechanics with random numbers used for molecular speeds, directions, and recoil angles. Isotropy-failure theory was applied to give the dependence on pressure of the gas. Isotropy-failure theory assumes that the probability of escape is increased by the absence of the container wall where the orifice is located. The simulation was performed for Ar at 1000 K for 10(7) collisions. The simulation provided the number of molecules and their speeds in the orifice direction as a function of the isotropy-failure parameter domega/2pi (related to the Knudsen number defined as the mean-free path divided by orifice diameter). As domega/2pi increased (Knudsen number decreased, pressure increased) the transmission probability of the orifice increased, and the average speed of molecules escaping along the orifice normal increased. The results are compared to experimental results for the orifice transmission probability and speed distribution.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://dx.doi.org/10.1021/jp052043d
    http://hdl.handle.net/10057/4368
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV