• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Infrared multiple photon dissociation spectroscopy of sodium and potassium chlorate anions

    Date
    2010-01-01
    Author
    Dain, Ryan P.
    Leavitt, Christopher M.
    Oomens, Jos
    Steill, Jeffrey D.
    Groenewold, Gary S.
    Van Stipdonk, Michael J.
    Metadata
    Show full item record
    Citation
    Rapid communications in mass spectrometry : RCM. 2010 Jan; 24(2): 232-8.
    Abstract
    The structures of gas-phase, metal chlorate anions with the formula [M(ClO(3))(2)](-), M = Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental vibrational spectra for the two species with those predicted by density functional theory (DFT) and involve conformations that feature either bidentate or tridentate coordination of the cation by chlorate. Our results strongly suggest that a structure in which both chlorate anions are bidentate ligands is preferred for [Na(ClO(3))(2)](-). However, for [K(ClO(3))(2)](-) the best agreement between experimental and theoretical spectra is obtained from a composite of predicted spectra for which the chlorate anions are either both bidentate or both tridentate ligands. In general, we find that the overall accuracy of DFT calculations for prediction of IR spectra is dependent on both functional and basis set, with best agreement achieved using frequencies generated at the B3LYP/6-311+g(3df) level of theory.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://dx.doi.org/10.1002/rcm.4379
    http://hdl.handle.net/10057/4318
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV