• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Production and collision-induced dissociation of gas-phase, water- and alcohol-coordinated uranyl complexes containing halide or perchlorate anions

    Date
    2004-01-01
    Author
    Anbalagan, Victor
    Chien, Winnie
    Gresham, Garold L.
    Groenewold, Gary S.
    Van Stipdonk, Michael J.
    Metadata
    Show full item record
    Citation
    Rapid communications in mass spectrometry : RCM. 2004; 18(24): 3028-34.
    Abstract
    Electrospray ionization was used to generate mono-positive gas-phase complexes of the general formula [UO2A(S)n]+ where A = OH, Cl, Br, I or ClO4, S = H2O, CH3OH or CH3CH2OH, and n = 1-3. The multiple-stage dissociation pathways of the complexes were then studied using ion-trap mass spectrometry. For H2O-coordinated cations, the dissociation reactions observed included the elimination of H2O ligands and the loss of HA (where A = Cl, Br or I). Only for the Br and ClO4 versions did collision-induced dissociation (CID) of the hydrated species generate the bare, uranyl-anion complexes. CID of the chloride and iodide versions led instead to the production of uranyl hydroxide and hydrated UO2+. Replacement of H2O ligands by alcohol increased the tendency to eliminate HA, consistent with the higher intrinsic acidity of the alcohols compared to water and potentially stronger UO2-O interactions within the alkoxide complexes compared to the hydroxide version.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://dx.doi.org/10.1002/rcm.1726
    http://hdl.handle.net/10057/4293
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV