• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene

    Date
    2009-07-30
    Author
    Maligaspe, Eranda
    Tkachenko, Nikolai V.
    Subbaiyan, Navaneetha K.
    Chitta, Raghu
    Zandler, Melvin E.
    Lemmetyinen, Helge
    D'Souza, Francis
    Metadata
    Show full item record
    Citation
    The journal of physical chemistry. A. 2009 Jul 30; 113(30): 8478-89.
    Abstract
    A self-assembled supramolecular triad, a model to mimic the photochemical events of photosynthetic antenna-reaction center, viz., sequential energy and electron transfer, has been newly constructed and studied. Boron dipyrrin, zinc porphyrin, and fullerene respectively constitute the energy donor, electron donor, and electron acceptor segments of the antenna-reaction center mimicry. For the construction, first, boron dipyrrin was covalently attached to a zinc porphyrin entity bearing a benzo-18-crown-6 host segment at the opposite end of the porphyrin ring. Next, an alkyl ammonium functionalized fullerene was used to self-assemble the crown ether entity via ion-dipole interactions. The newly formed supramolecular triad was fully characterized by spectroscopic, computational, and electrochemical methods. Selective excitation of the boron dipyrrin moiety in the dyad resulted in energy transfer over 97% efficiency creating singlet excited zinc porphyrin. The rate of energy transfer from the decay measurements of time-correlated singlet photon counting (TCSPC) and up-conversion techniques agreed well with that obtained by the pump-probe technique and revealed efficient photoinduced energy transfer in the dyad (time constant in the order of 10-60 ps depending upon the conformer). Upon forming the supramolecular triad by self-assembling fullerene, the excited zinc porphyrin resulted in electron transfer to the coordinated fullerene yielding a charge-separated state, thus mimicking the antenna-reaction center functionalities of photosynthesis. Nanosecond transient absorption studies yielded a lifetime of the charge-separated state to be 23 micros indicating charge stabilization in the supramolecular triad. The present supramolecular system represents a successful model to mimic the rather complex "combined antenna-reaction center" events of photosynthesis.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://dx.doi.org/10.1021/jp9032194
    http://hdl.handle.net/10057/4255
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV