• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Chemistry and Biochemistry
    • CHEM Faculty Scholarship
    • CHEM Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanism-based inhibition of human leukocyte elastase and cathepsin G by substituted dihydrouracils

    Date
    1994-11-29
    Author
    Groutas, William C.
    Huang, He
    Epp, Jeffrey B.
    Venkataraman, Radhika
    McClenahan, Jerry J.
    Tagusagawa, F.
    Metadata
    Show full item record
    Citation
    Biochimica et biophysica acta. 1994 Nov 29; 1227(3): 130-6.
    Abstract
    A series of dihydrouracil derivatives has been synthesized and investigated for their in vitro inhibitory activity toward human leukocyte elastase (HLE) and cathepsin G (Cath G). Alkyl [sulfonyl(oxy)] uracils 1-2 were found to be efficient, time-dependent inhibitors of elastase (kobs/[I] M-1 s-1 values ranged between 480 and 8110). These compounds formed acyl enzymes that exhibited variable hydrolytic stability which appeared to be dependent on the nature of the R1 group (believed to be accommodated at the primary specificity site, S1). The acyl enzymes formed with cathepsin G deacylated rapidly, leading to a significant regain of enzymatic activity. In sharp contrast, the corresponding phosphorus compounds 3-4 were found to be potent, time-dependent irreversible inhibitors of HLE. Furthermore, the results of the structure-activity relationship studies suggest that the binding modes of compounds 1-2 and 3-4 may be different.
    Description
    Full text of this article is not available in SOAR.
    URI
    http://hdl.handle.net/10057/4236
    Collections
    • CHEM Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV