• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of human FSH isoforms reveals a nonglycosylated beta-subunit in addition to the conventional glycosylated beta-subunit

    Date
    2001-08
    Author
    Walton, Wendy J.
    Nguyen, Van T.
    Butnev, Vladimir Y.
    Singh, Vinod
    Moore, William T.
    Bousfield, George R.
    Metadata
    Show full item record
    Citation
    The Journal of clinical endocrinology and metabolism. 2001 Aug; 86(8): 3675-85.
    Abstract
    Human FSH consists of a mixture of isoforms that can be separated on the basis of differences in negative charge conferred by variations in the numbers of sialic acid residues that terminate oligosaccharide branches. Western analysis of human FSH isoforms separated by chromatofocusing revealed the presence of two human FSHbeta isoforms that differed in size. A low mol wt human FSHbeta isoform was associated with all FSH isoform fractions. A high mol wt human FSHbeta isoform was associated with the more acidic fractions and increased in relative abundance as the pI decreased. Characterization of representative human FSHbeta isoforms by mass spectrometry and automated Edman degradation revealed a low mol wt isoform that was not glycosylated. A high mol wt isoform was N-glycosylated at Asn residues 7 and 24. These results indicate that pituitary human FSH consists of two classes of molecules: those that possess a nonglycosylated beta-subunit and those that possess a glycosylated beta-subunit. Glycoprotein hormones are known to be elliptical molecules, and the beta-subunit oligosaccharides project outward from the short diameter, thereby increasing it. It is interesting to speculate that this change in shape might affect ultrafiltration rates, leading to differences in delivery rates to target tissues and elimination by filtration in the kidney.
    Description
    Click on the link below to access the article (may not be free).
    URI
    http://jcem.endojournals.org/content/86/8/3675.full.pdf+html
    http://hdl.handle.net/10057/4180
    Collections
    • BIO Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV