• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    All-or-none N-glycosylation in primate follicle-stimulating hormone beta-subunits

    Date
    2007-01-02
    Author
    Bousfield, George R.
    Butnev, Vladimir Y.
    Walton, Wendy J.
    Nguyen, Van T.
    Huneidi, Jennifer
    Singh, Vinod
    Kolli, V. S. Kumar
    Harvey, David J.
    Rance, Naomi E.
    Metadata
    Show full item record
    Citation
    Molecular and cellular endocrinology. 2007 Jan 2; 260-262: 40-8.
    Abstract
    Human FSH exists as two major glycoforms designated, tetra-glycosylated and di-glycosylated hFSH. The former possesses both alpha- and beta-subunit carbohydrates while the latter possesses only alpha-subunit carbohydrate. Western blotting differentiated the glycosylated, 24,000 M(r) hFSHbeta band from the non-glycosylated 21,000 M(r) FSHbeta band. Postmenopausal urinary hFSH preparations possessed 75-95% 24,000 M(r) hFSHbeta, while pituitary hFSH immunopurified from 21- to 43-year-old females and 21-43-year-old males possessed only 35-40% 24,000 M(r) hFSHbeta. The pituitary hFSH from a postmenopausal woman on estrogen replacement was 75% 21,000 M(r) hFSHbeta. Other immunopurified postmenopausal pituitary hFSH preparations possessed 50-60% 21,000 M(r) hFSHbeta. Gel filtration removed predominantly 21,000 M(r) free hFSHbeta and reduced its abundance to 13-22% in postmenopausal pituitary hFSH heterodimer preparations. A major regulatory mechanism for FSH glycosylation involves control of beta-subunit N-glycosylation, possibly by inhibition of oligosaccharyl transferase. Two primate species exhibited the same all-or-none pattern of pituitary FSHbeta glycosylation.
    Description
    Click on the DOI link below to access the article (may not be free).
    URI
    http://dx.doi.org/10.1016/j.mce.2006.02.017
    http://hdl.handle.net/10057/4169
    Collections
    • BIO Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV