• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Biological Sciences
    • BIO Faculty Scholarship
    • BIO Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Culture-independent analysis of the soil bacterial assemblage at the Great Salt Plains of Oklahoma

    Date
    2011-09-23
    Author
    Santos-Caton, Ingrid R.
    Schneegurt, Mark A.
    Metadata
    Show full item record
    Citation
    Journal of basic microbiology. 2011 Sep 23.
    Abstract
    The Great Salt Plains (GSP) of Oklahoma is a natural inland terrestrial hypersaline environment that forms evaporite crusts of mainly NaCl. Previous work described GSP bacterial assemblages through the phylogenetic and phenetic characterization of 105 isolates from 46 phylotypes. The current report describes the same bacterial assemblages through culture-independent 16S rRNA gene clone libraries. Although from similar hypersaline mud flats, the bacterial libraries from two sites, WP3 and WP6, were quite different. The WP3 library was dominated by cyanobacteria, mainly Cyanothece and Euhalothece. The WP6 library was rich in anaerobic sulfur-cycle organisms, including abundant Desulfuromonas. This pattern likely reflects differences in abiotic factors, such as frequency of flooding and hydrologic push. While more than 100 OTUs were identified, the assemblages were not as diverse, based on Shannon indexes, as bacterial communities from oligohaline soils. Since natural inland hypersaline soils are relatively unstudied, it was not clear what kind of bacteria would be present. The bacterial assemblage is predominantly genera typically found in hypersaline systems, although some were relatives of microbes common in oligohaline and marine environments. The bacterial clones did not reflect wide functional diversity, beyond phototrophs, sulfur metabolizers, and numerous heterotrophs. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    URI
    http://hdl.handle.net/10057/4126
    http://dx.doi.org/10.1002/jobm.201100175
    Collections
    • BIO Faculty Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV