dc.contributor.author | Rousan, N. S. | en_US |
dc.contributor.author | Sawan, M. Edwin | en_US |
dc.date.accessioned | 2011-12-20T23:06:17Z | |
dc.date.available | 2011-12-20T23:06:17Z | |
dc.date.issued | 1991-06-26 | en_US |
dc.identifier.citation | Rousan, N. S.; Sawan, M. E.; , "Constrained Pole Placement by Linear Quadratic Modification," American Control Conference, 1991 , vol., no., pp.124-125, 26-28 June 1991 | en_US |
dc.identifier.isbn | 0879425652 | en_US |
dc.identifier.uri | http://hdl.handle.net/10057/4054 | |
dc.description | The full text of this article is not available on SOAR. WSU users can access the article via IEEE Xplore database licensed by University Libraries: http://libcat.wichita.edu/vwebv/holdingsInfo?bibId=1045954 | en_US |
dc.description.abstract | A noniterative method is introduced that will enable the designer to find an optmal one step state feedback controller. The controller will place the eigenvalues of the closed loop system in a specified disk. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartofseries | American Control Conference, 1991 , vol., no., pp.124-125 | en_US |
dc.subject | Closed loop systems | en_US |
dc.subject | Continuous time systems | en_US |
dc.subject | Control systems | en_US |
dc.subject | Cost function | en_US |
dc.subject | Design methodology | en_US |
dc.subject | Eigenvalues and eigenfunctions | en_US |
dc.subject | Linear feedback control systems | en_US |
dc.subject | Optimal control | en_US |
dc.subject | Robustness | en_US |
dc.subject | State feedback | en_US |
dc.title | Constrained pole placement by linear quadratic modification | en_US |
dc.type | Conference paper | en_US |
dc.description.version | Peer reviewed article | en_US |
dc.rights.holder | © IEEE, 1991 | en_US |