• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • Ravi Pendse
    • Conference proceedings
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • Ravi Pendse
    • Conference proceedings
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of LRU block replacement algorithm with pre-fetching

    View/Open
    Pendse_1998a (692.6Kb)
    Date
    1998-08-09
    Author
    Pendse, Ravi
    Bhagavathula, Ravi
    Metadata
    Show full item record
    Citation
    Pendse, R.; Bhagavathula, R.; "Performance of LRU block replacement algorithm with pre-fetching," Circuits and Systems, 1998. Proceedings, 1998 Midwest Symposium on, vol., no., pp.86-89, 9-12 Aug 1998 doi: 10.1109/MWSCAS.1998.759441
    Abstract
    An economical solution to the need for unlimited amounts of fast memory is a memory hierarchy, which takes advantage of locality and cost/performance of memory technologies. Most of the advanced block replacement algorithms exploit the presence of temporal locality in programs to achieve a better performing cache. A direct fallout of this approach is the increased overhead involved due to the complexity of the algorithm without any significant improvement in the cache performance. The performance of the cache could be improved if spatial locality present in the programs is further exploited. This paper presents the results of the investigation of the impact of pre-fetching techniques on the miss rates due to the basic Least Recently Used (LRU) block replacement algorithm. Simulations reveal an improvement of about 60% in the miss rates for instruction caches due to pre-fetching and a corresponding improvement of about 10% for data caches.
    Description
    The full text of this article is not available on SOAR. WSU users can access the article via IEEE Xplore database licensed by University Libraries: http://libcat.wichita.edu/vwebv/holdingsInfo?bibId=1045954
    URI
    http://hdl.handle.net/10057/3807
    http://dx.doi.org/10.1109/MWSCAS.1998.759441
    Collections
    • Conference proceedings
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV