• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • Ravi Pendse
    • Conference proceedings
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Electrical Engineering and Computer Science
    • EECS Faculty Scholarship
    • Ravi Pendse
    • Conference proceedings
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamical adjustment of block replacement algorithms

    View/Open
    Pendse_1998b (446.7Kb)
    Date
    1998-03-08
    Author
    Walterscheidt, U.
    Pendse, Ravi
    Metadata
    Show full item record
    Citation
    Walterscheidt, U.; Pendse, R.; , "Dynamical adjustment of block replacement algorithms," System Theory, 1998. Proceedings of the Thirtieth Southeastern Symposium on , vol., no., pp.544-548, 8-10 Mar 1998 doi: 10.1109/SSST.1998.660133
    Abstract
    Block replacement algorithms are an important component of any cache controller, specially for disk caches. In recent years, complex and sophisticated algorithms have been developed, that reduce the miss-rate of disk caches. All of these algorithms require some sort of tuning in order to achieve their full performance. Up until now, the “optimal” parameters have been determined by running simulations with access traces. Parameters found have then been implemented in the hope that the actual access patterns would not deviate too much from the ones used in the simulations. When they did, miss-rates would increase, often exceeding miss-rates of more conventional replacement strategies like the least recently used block replacement algorithm (LRU). In this paper, we present a method of adjusting an algorithm's tuning parameter at run-time, by constantly monitoring its performance. We will show that dynamic tuning is able to approach the results of an optimal value that was determined by using simulations. Additionally, we will demonstrate the ability of this new technique to adapt to completely different workloads.
    Description
    The full text of this article is not available on SOAR. WSU users can access the article via IEEE Xplore database licensed by University Libraries: http://libcat.wichita.edu/vwebv/holdingsInfo?bibId=1045954
    URI
    http://hdl.handle.net/10057/3806
    http://dx.doi.org/10.1109/SSST.1998.660133
    Collections
    • Conference proceedings
    • EECS Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV