• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Geology
    • GEO Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Fairmount College of Liberal Arts and Sciences
    • Geology
    • GEO Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico

    View/Open
    Full text is restricted pending publisher's permission (11.63Mb)
    Date
    2004-11
    Author
    Mancini, Ernest A.
    Llinás, Juan Carlos
    Parcell, William C.
    Aurell, Marc
    Bádenas, Beatriz
    Leinfelder, Reinhold R.
    Benson, D. Joe
    Metadata
    Show full item record
    Citation
    Ernest A. Mancini, Juan Carlos Llinás, William C. Parcell, Marc Aurell, Beatriz Bádenas, Reinhold R. Leinfelder, and D. Joe Benson Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico AAPG Bulletin, Nov 2004; 88: 1573 - 1602.
    Abstract
    In the northeastern Gulf of Mexico, Upper Jurassic Smackover inner ramp, shallow-water thrombolite buildups developed on paleotopographic features in the eastern part of the Mississippi Interior Salt basin and in the Manila and Conecuh subbasins. These thrombolites attained a thickness of 58 m (190 ft) and were present in an area of as much as 6.2 km2 (2.4 mi2). Although these buildups have been exploration targets for some 30 yr, new field discoveries continue to be made in this region. Thrombolites were best developed on a hard substrate during a rise in sea level under initial zero to low background sedimentation rates in low-energy and eurytopic paleoenvironments. Extensive microbial growth occurred in response to available accommodation space. The demise of the thrombolites corresponded to changes in the paleoenvironmental conditions associated with an overall regression of the sea. The keys to drilling successful wildcat wells in the thrombolite reservoir play are to (1) use three-dimensional seismic reflection technology to find paleohighs and to determine whether potential thrombolite reservoir facies occur on the crest and/or flanks of these features and are above the oil-water contact; (2) use the characteristics of thrombolite bioherms and reefs as observed in outcrop to develop a three-dimensional geologic model to reconstruct the growth of thrombolite buildups on paleohighs for improved targeting of the preferred dendroidal and chaotic thrombolite reservoir facies; and (3) use the evaporative pumping mechanism instead of the seepage reflux or mixing zone models as a means for assessing potential dolomitization of the thrombolite boundstone.
    Description
    DOI: 10.1306/06210404017
    URI
    http://hdl.handle.net/10057/3555
    Collections
    • GEO Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV