• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of slotted aloha anti-collision protocol for RFID systems under interfering environments

    View/Open
    Thesis (870.5Kb)
    Date
    2010-08
    Author
    Deegala, Kavindya
    Advisor
    Namboodiri, Vinod
    Metadata
    Show full item record
    Abstract
    Radio Frequency Identification (RFID) is a wireless technology that has replaced barcodes. This technology is used in today’s world to track assets and people. An RFID system consists of three components: the tag, the reader, and the middleware. The RFID tag stores data, the reader is used to identify the data stored in the tag or write data to the tag, and the RFID middleware is the application that connects the data that the reader obtains from the tag with the company inventory or database. Unlike barcode readers, an RFID reader is capable of reading multiple tags located in its range. When this occurs, the probability of tag collision at the reader’s end is high. To avoid tag collision, anti-collision protocols are used. Slotted Aloha is one of the main anti-collision protocols used with RFID. This thesis proposed a mathematical model and a simulator to analyze the performance of the Slotted Aloha protocol without interference. Tag detection is directly related to tag signal strength detected by the reader. Radio Frequency signals behave differently when different objects are present in the environment. For example water absorbs radio signals. When water is present in the environment, tag detection will not be successful, since radio signals will be absorbed by the water. Therefore, water is considered an interference factor in tag detection. This thesis also proposed a mathematical model and a simulator to analyze the performance of the Slotted Aloha protocol with interference. A comparison of both sets of results shows that the proposed mathematical model and the simulator are accurate. Results of the analysis show that the time required to identify tags with interference is longer than the time required to identify tags without interference.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical Engineering and Computer Science.
    URI
    http://hdl.handle.net/10057/3476
    Collections
    • CE Theses and Dissertations
    • EECS Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV