• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Processing and characterization of carbon nanoparticle/fiber-reinforced polymer composites

    View/Open
    Dissertation (11.29Mb)
    Date
    2010-08
    Author
    Rodriguez, Alejandro J.
    Advisor
    Minaie, Bob
    Metadata
    Show full item record
    Abstract
    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have an exceptional combination of properties that make them ideal materials for use as reinforcing particles in advanced composites. This investigation was aimed at obtaining fundamental understanding of the processing and properties of carbon nanoparticle/fiber-reinforced polymer composites ―defined as multiscalereinforced polymer composites (MRPCs)― manufactured through a practical and scalable process. Such process consists of two stages. The first stage involves the synthesis of multiscalereinforcement fabrics (MRFs) by electrophoretic deposition of carboxylic acid- or aminefunctionalized CNTs and CNFs onto the surface of carbon fiber layers in aqueous medium; while the second stage proceeds with the stacking of the MRFs and infusion of the resulting preforms with an epoxy-amine resin system to obtain the MRPC. MRPCs manufactured following the described approach were tested for mechanical and electrical properties. Mechanical test results showed an increase in interlaminar shear strength (ILSS), shear stiffness, and compressive strength of all panels manufactured. Panels containing amine-functionalized carbon nanoparticles had the highest increase in properties: 13% in ILSS, 2.5-4 fold in shear stiffness, and up to 15% in compressive strength. On the other hand, it was found that through-plane electrical conductivity of MRPCs increased by 100% when using unsized MRFs. Investigation into the enhancement mechanism of mechanical and electrical properties was also performed. Discussion of these mechanisms are presented with emphasis placed on the fiber/matrix interface and the load transfer mechanisms between matrix, carbon nanoparticles, and carbon fiber.
    Description
    Thesis (Ph.D.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
    URI
    http://hdl.handle.net/10057/3467
    Collections
    • CE Theses and Dissertations
    • Dissertations
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2022  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV