• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Developing electrospun fibers for hydrogen storage applications

    View/Open
    thesis embargoed till 2024-07-31 (12.57Mb)
    Date
    2023-05
    Author
    Mohammed, Qamar Saberi
    Advisor
    Asmatulu, Eylem
    Metadata
    Show full item record
    Abstract
    The primary objective of this research was to produce an electrospun nanofiber for the application of hydrogen storage, and the absorption kinetics of the highly porous nanocomposite fiber mats. One of the critical components of advancing hydrogen, and fuel cell technologies advancement is successfully storing hydrogen for use in various industries, like transportation, defense, compact gadgets, and energy. Hydrogen energy is the future because of its highest energy density, availability, and environmental and health benefits. Currently, enterprises are searching for a solution for energy distribution management and hydrogen gas storage. In this way, there is a need to develop a hydrogen storage innovation that might be considered for later use in aviation applications. It is being researched that functional nanocomposite fibers incorporated with hydrogen-sensitive inclusions will increase hydrogen storage capacity, and absorption/desorption kinetics of hydrogen gas at lower temperatures and pressures. Here, the electrospinning method has been used to produce polymeric nanofibers with different nanoscale metal hydrides, and conductive particles that can store hydrogen under a controlled environment, and enhance thermal properties. Selected polymeric materials for hydrogen storage that have been investigated are polyacrylonitrile (PAN), poly (methyl methacrylate) (PMMA), and sulfonated polyether ether ketone (SPEEK) in combination with metallic hydrides, and multi-walled carbon nanotubes. On testing, it was observed that hydrogen capacity with SPEEK, which includes 4% MWCNT and 4% MH (Mmni4.5Fe0.5) shows significant H2 uptake compared to PAN/PMMA polymer.
    Description
    Thesis (M.S.)-- Wichita State University, College of Engineering, Dept. of Mechanical Engineering
    URI
    https://soar.wichita.edu/handle/10057/25717
    Collections
    • CE Theses and Dissertations
    • Master's Theses
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV