• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A finite element model to study the torsional fracture strength of a composite tibia

    View/Open
    Thesis (6.578Mb)
    Date
    2009-12
    Author
    Reuter, Kimberly Marie
    Advisor
    Lankarani, Hamid M.
    Metadata
    Show full item record
    Abstract
    Screws are common orthopaedic hardware used to secure a fractured bone. After the bone has healed, the screws may be removed, and the vacant screw holes introduce a potential site for re-fracture, which is a known complication. The current study simulated a laboratory torsional fracture test of a composite analogue tibia with vacant screw holes by using a finite element (FE) model, and the results from the simulation were compared to those obtained experimentally. Variations of the FE model were also analyzed to investigate the effects of failure model, screw holes, element size, rotation direction, and simplification of the model's geometry. This FE model was set up the same as the experimental torsion test, with a section from the distal portion of the tibia. The proximal end of the section was subjected to an axial load and rotated, while the distal end was fixed. The FE model contained 102,126 first order tetrahedral elements and 24,817 nodes, and it utilized an isotropic linear elastic material law with material properties obtained from the composite analogue manufacturer. Comparisons between the FE model variations considered the fracture torque, fracture angle, torsional stiffness, principal stress contour, and maximum shear stress contour. The results predicted a fracture torque within the standard deviation of the experimental data, and the percent of strength reduction caused by the screw holes agreed with experimental data.
    Description
    Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
    URI
    http://hdl.handle.net/10057/2544
    Collections
    • CE Theses and Dissertations
    • Master's Theses
    • ME Theses and Dissertations

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV