• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • School of Computing
    • SoC Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multispectral deep learning models for wildfire detection

    View/Open
    Open access PDF (1.383Mb)
    Date
    2022-07-06
    Author
    Haridasan, Smitha
    Rattani, Ajita
    Demissie, Zelalem
    Dutta, Atri
    Metadata
    Show full item record
    Citation
    Haridasan, S., Rattani, A., Demissie, Z., & Dutta, A. (2022). Multispectral deep learning models for wildfire detection Data-driven Resilience Research 2022, Leipzig, Germany.
    Abstract
    Aided by wind, all it takes is one ember and few minutes to create wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision based techniques have been proposed for early detection of forest fire using video surveillance. Several computer vision based methods have been proposed to predict and detect forest fires at various spectrum, namely, RGB, HSV and YCbCr. The aim of this paper is to propose multi-spectral deep learning model that combine information from different spectrum at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available dataset is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 1.9% and 14.88% in test and challenge set over those based on single spectrum for fire detection even in challenging environments.
    Description
    Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
    URI
    https://ceur-ws.org/Vol-3376/paper06.pdf
    https://soar.wichita.edu/handle/10057/25301
    Collections
    • AE Research Publications
    • GEO Research Publications
    • SoC Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV