Show simple item record

dc.contributor.authorRam, Parikshit
dc.contributor.authorSinha, Kaushik
dc.identifier.citationRam, P., & Sinha, K. (2022). Federated Nearest Neighbor Classification with a Colony of Fruit-Flies. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7), 8036-8044.
dc.descriptionClick on the DOI to access this article (may not be free).
dc.description.abstractThe mathematical formalization of a neurological mechanism in the fruit-fly olfactory circuit as a locality sensitive hash (Flyhash) and bloom filter (FBF) has been recently proposed and "reprogrammed" for various learning tasks such as similarity search, outlier detection and text embeddings. We propose a novel reprogramming of this hash and bloom filter to emulate the canonical nearest neighbor classifier (NNC) in the challenging Federated Learning (FL) setup where training and test data are spread across parties and no data can leave their respective parties. Specifically, we utilize Flyhash and FBF to create the FlyNN classifier, and theoretically establish conditions where FlyNN matches NNC. We show how FlyNN is trained exactly in a FL setup with low communication overhead to produce FlyNNFL, and how it can be differentially private. Empirically, we demonstrate that (i) FlyNN matches NNC accuracy across 70 OpenML datasets, (ii) FlyNNFL training is highly scalable with low communication overhead, providing up to 8x speedup with 16 parties.
dc.relation.ispartofseriesProceedings of the AAAI Conference on Artificial Intelligence
dc.relation.ispartofseriesVolume 36, No. 7
dc.subjectMachine learning
dc.titleFederated nearest neighbor classification with a colony of fruit-flies
dc.typeConference paper
dc.rights.holder© 2022, Association for the Advancement of Artificial Intelligence

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record