• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Engineering
    • Biomedical Engineering
    • BioMed Engineering Research
    • BIOMED Research Publications
    • View Item
    •   Shocker Open Access Repository Home
    • Engineering
    • Biomedical Engineering
    • BioMed Engineering Research
    • BIOMED Research Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wearable sensing system for noninvasive monitoring of intracranial biofluid shifts in aerospace applications

    View/Open
    Open access PDF (1.657Mb)
    Date
    2023-01-14
    Author
    Griffith, Jacob L.
    Cluff, Kim
    Downes, Grant M.
    Eckerman, Brandon
    Bhandari, Subash
    Loflin, Benjamin E.
    Becker, Ryan
    Alruwaili, Fayez H.
    Mohammed, Noor
    Metadata
    Show full item record
    Citation
    Griffith JL, Cluff K, Downes GM, Eckerman B, Bhandari S, Loflin BE, Becker R, Alruwaili F, Mohammed N. Wearable Sensing System for NonInvasive Monitoring of Intracranial BioFluid Shifts in Aerospace Applications. Sensors. 2023; 23(2):985. https://doi.org/10.3390/s23020985
    Abstract
    The alteration of the hydrostatic pressure gradient in the human body has been associated with changes in human physiology, including abnormal blood flow, syncope, and visual impairment. The focus of this study was to evaluate changes in the resonant frequency of a wearable electromagnetic resonant skin patch sensor during simulated physiological changes observed in aerospace applications. Simulated microgravity was induced in eight healthy human participants (n = 8), and the implementation of lower body negative pressure (LBNP) countermeasures was induced in four healthy human participants (n = 4). The average shift in resonant frequency was −13.76 ± 6.49 MHz for simulated microgravity with a shift in intracranial pressure (ICP) of 9.53 ± 1.32 mmHg, and a shift of 8.80 ± 5.2097 MHz for LBNP with a shift in ICP of approximately −5.83 ± 2.76 mmHg. The constructed regression model to explain the variance in shifts in ICP using the shifts in resonant frequency (R2 = 0.97) resulted in a root mean square error of 1.24. This work demonstrates a strong correlation between sensor signal response and shifts in ICP. Furthermore, this study establishes a foundation for future work integrating wearable sensors with alert systems and countermeasure recommendations for pilots and astronauts.
    Description
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
    URI
    https://doi.org/10.3390/s23020985
    https://soar.wichita.edu/handle/10057/24999
    Collections
    • BIOMED Research Publications

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV