• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep learning-based approaches for prediction of post-translational modification sites in proteins

    View/Open
    dissertation embargoed till 2023-12-31 (2.839Mb)
    Date
    2022-12
    Author
    Pakhrin, Subash C.
    Advisor
    Bagai, Rajiv
    Metadata
    Show full item record
    Abstract
    Protein post-translational modification plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of post-translational modification sites in proteins. Computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. This dissertation reports on DeepNGlyPred, a deep neural network-based approach for N-linked glycosylation sites PTM prediction and it encodes the positive and negative sequences in the human proteome dataset using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. Similarly, this dissertation presents LMNglyPred, a deep learning-based approach to predict N-linked glycosylated sites in human proteins using embeddings from a pre-trained protein language model. To efficiently explore more undiscovered ubiquitylation sites, a novel multimodal deep learning architecture tool that identifies ubiquitination sites in proteins is studied. This study proposes a novel integrated deep learning-based approach named UbiIDN, for general ubiquitination site prediction, extracts and combines sequence and physicochemical properties information. Moreover, a novel integrated deep learning-based approach named LMPhosSite, for general phosphorylation site prediction is developed. LMPhosSite extracts and combines sequence and protein language model information. Using an independent test set of experimentally identified N-linked glycosylation, ubiquitination, and phosphorylation sites the respectively developed predictors were able to outperform state-of-the-art predictors. These results demonstrate that developed predictors are a robust computational technique to predict PTM sites in proteins.
    Description
    Thesis (Ph.D.)-- Wichita State University, College of Engineering, School of Computing
    URI
    https://soar.wichita.edu/handle/10057/24982
    Collections
    • CE Theses and Dissertations
    • Dissertations
    • SoC Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV