• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A bluetooth-enabled, light weight, flexible epidermal electronic system for ECG monitoring

    View/Open
    thesis (4.981Mb)
    Date
    2022-12
    Author
    Chowdhury, Rakhi
    Advisor
    Lee, Yongkuk
    Metadata
    Show full item record
    Abstract
    With 17.9 million deaths annually, cardiovascular diseases (CVDs) have become the leading cause of mortality worldwide. This increased death rate creates a significant need for long-term ambulatory ECG monitoring for early diagnosis and treatment. Commercially existing ECG monitors use rigid materials, aggressive adhesives, and lack mechanical compliance with skin. Here, a wireless, Bluetooth-enabled, flexible, low-profile epidermal ECG monitoring device is presented with high-quality ECG signals. Electrode placements with different distances are investigated to find the optimal placement position of the electrode on the chest for identical readings with traditional ECG lead I and II. Afterward, the dry electrode and circuit are microfabricated using 2 $\mu{m}$-thick copper foil. The functionality of the electrode is demonstrated with stretchability, contact impedance, and EMG SNR measurement. The device's functionality is presented with a flexibility test, antenna performance test, RSSI measurement, and ECG signal collection. Contact impedance values for gel and dry electrodes are comparable, which are 3.94 and 3.96, respectively. Also, EMG SNR values are comparable for gel and dry electrodes, with 18.12 dB and 17.84 dB, respectively. Mechanical and electrical experiments suggest a 2 mm radius of curvature at 180° bending as the maximum flexibility of the device and a 30m long working distance for constant wireless communication between the device and a portable device. The morphology and quality of ECG signals acquired from human subjects during different activities demonstrate the device's potential for ambulatory monitoring. Overall, our findings prove the device is flexible, Bluetooth enabled, and can provide conformal contact with skin to achieve ECG monitoring in real-time effortlessly. Future work should include validating the device's functionality with data collection during different activities of the human subject.
    Description
    Thesis (M.S.)-- Wichita State University, College of Engineering, Dept. of Biomedical Engineering
    URI
    https://soar.wichita.edu/handle/10057/24959
    Collections
    • BioMed Theses
    • CE Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV