• Login
    View Item 
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    •   Shocker Open Access Repository Home
    • Graduate Student Research
    • ETD: Electronic Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inkjet printing techniques for wearable/stretchable electronics in healthcare

    View/Open
    thesis (3.672Mb)
    Date
    2022-12
    Author
    Al Wahid, Ali Mohammed
    Advisor
    Lee, Yongkuk
    Metadata
    Show full item record
    Abstract
    Inkjet printing techniques, a good alternative of the traditional MEMS techniques, can be utilized to fabricate flexible and stretchable electronics, which can be used for healthcare applications. Therefore, the objectives of this study are 1) Providing proof of concept for the inkjet printing parameters for silver (Ag) and polyimide (PI) inks, 2) understanding the relationship between the dynamics of inkjet-printed patterns and surface energies of the substrate, and 3) demonstrating printing a flexible circuit on a PI coated substrate. During experiments, the effects of the printing parameters including jetting voltages, cartridge temperatures, and drop spacings of both the Ag and PI inks via the drop size and line width measurements were explored. The surface energies were manipulated by applying $O_2$ and $CF_4$ plasma for different durations using Reactive Ion Etching (RIE) that were measured by the means of contact angle measurements and ink drop size and line width measurements. Our results indicated that 1) the drop sizes increase as jetting voltages and cartridge temperatures increase, respectively, 2) the line widths decrease with increasing drop spacings, and 3) the $CF_4$ plasma increases the hydrophobicity of the surface while $O_2$ increases the hydrophilicity of the surface. Collectively, we successfully demonstrated accurate printing of multi-layered ECG circuit with a drop size of 40 $\mu{m}$ for the Ag ink and PI ink. The next goal will be to demonstrate wireless continuous monitoring of reliable ECG signals using the printed ECG circuit.
    Description
    Thesis (M.S.)-- Wichita State University, College of Engineering, Dept. of Biomedical Engineering
    URI
    https://soar.wichita.edu/handle/10057/24954
    Collections
    • BioMed Theses
    • CE Theses and Dissertations
    • Master's Theses

    Browse

    All of Shocker Open Access RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace software copyright © 2002-2023  DuraSpace
    DSpace Express is a service operated by 
    Atmire NV