Show simple item record

dc.contributor.authorSiddiqui, Hera
dc.contributor.authorRattani, Ajita
dc.contributor.authorRicanek, Karl
dc.contributor.authorHill, Twyla
dc.date.accessioned2023-01-09T16:59:40Z
dc.date.available2023-01-09T16:59:40Z
dc.date.issued2022-06-19
dc.identifier.citationH. Siddiqui, A. Rattani, K. Ricanek and T. Hill, "An Examination of Bias of Facial Analysis based BMI Prediction Models," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, pp. 2925-2934, doi: 10.1109/CVPRW56347.2022.00330.
dc.identifier.issn2160-7516
dc.identifier.urihttps://doi.org/10.1109/CVPRW56347.2022.00330
dc.identifier.urihttps://soar.wichita.edu/handle/10057/24860
dc.descriptionClick on the DOI to access this article (may not be free).
dc.description.abstractObesity is one of the most important public health problems that the world is facing today. A recent trend is in the development of intervention tools that predict BMI using facial images for weight monitoring and management to combat obesity. Most of these studies used BMI annotated facial image datasets that mainly consisted of Caucasian subjects. Research on bias evaluation of face-based gender-, age-classification, and face recognition systems suggest that these technologies perform poorly for women, dark-skinned people, and older adults. The bias of facial analysis-based BMI prediction tools has not been studied until now. This paper evaluates the bias of facial-analysis-based BMI prediction models across Caucasian and African-American Males and Females. Experimental investigations on the gender, race, and BMI balanced version of the modified MORPH-II dataset suggested that the error rate in BMI prediction was least for Black Males and highest for White Females. Further, the psychology-related facial features correlated with weight suggested that as the BMI increases, the changes in the facial region are more prominent for Black Males and the least for White Females. This is the reason for the least error rate of the facial analysis-based BMI prediction tool for Black Males and highest for White Females.
dc.language.isoen_US
dc.publisherIEEE
dc.relation.ispartofseriesIEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
dc.relation.ispartofseries2022
dc.subjectObesity
dc.subjectError analysis
dc.subjectFace recognition
dc.subjectPsychology
dc.subjectPredictive models
dc.subjectMarket research
dc.subjectPublic healthcare
dc.titleAn examination of bias of facial analysis based BMI prediction models
dc.typeConference paper
dc.rights.holder© 2022 IEEE


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record